Advertisement
Review Article| Volume 66, ISSUE 1, P131-155, January 2022

Nanomedicine and Periodontal Regenerative Treatment

  • Olivier Huck
    Correspondence
    Corresponding author. 8 rue Sainte-Elisabeth, 67000 Strasbourg, France.
    Affiliations
    INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France

    Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France

    Pôle de médecine et chirurgie bucco-dentaire, Hôpitaux Universitaires de Strasbourg, Periodontology, 1 place de l'Hopital, 67000, Strasbourg, France
    Search for articles by this author
  • Céline Stutz
    Affiliations
    INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France
    Search for articles by this author
  • Pierre-Yves Gegout
    Affiliations
    INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France

    Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France

    Pôle de médecine et chirurgie bucco-dentaire, Hôpitaux Universitaires de Strasbourg, Periodontology, 1 place de l'Hopital, 67000, Strasbourg, France
    Search for articles by this author
  • Hayriye Özçelik
    Affiliations
    INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France
    Search for articles by this author
  • Nadia Benkirane-Jessel
    Affiliations
    INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France
    Search for articles by this author
  • Catherine Petit
    Affiliations
    INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France

    Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France

    Pôle de médecine et chirurgie bucco-dentaire, Hôpitaux Universitaires de Strasbourg, Periodontology, 1 place de l'Hopital, 67000, Strasbourg, France
    Search for articles by this author
  • Fareeha Batool
    Affiliations
    INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), CRBS, 1 rue Eugène Boeckel, 67000 Strasbourg, France

    Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France
    Search for articles by this author
Published:August 10, 2021DOI:https://doi.org/10.1016/j.cden.2021.06.005

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Dental Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bosshardt D.D.
        • Sculean A.
        Does periodontal tissue regeneration really work?.
        Periodontol 2000. 2009; 51: 208-219
        • Harmouche L.
        • Courval A.
        • Mathieu A.
        • et al.
        Impact of tooth-related factors on photodynamic therapy effectiveness during active periodontal therapy: a 6-months split-mouth randomized clinical trial.
        Photodiagnosis Photodyn Ther. 2019; 27: 167-172
        • Eickholz P.
        • Koch R.
        • Kocher T.
        • et al.
        Clinical benefits of systemic amoxicillin/metronidazole may depend on periodontitis severity and patients’ age: an exploratory sub-analysis of the ABPARO trial.
        J Clin Periodontol. 2019; 46: 491-501
        • Martin-Cabezas R.
        • Davideau J.-L.
        • Tenenbaum H.
        • et al.
        Clinical efficacy of probiotics as an adjunctive therapy to non-surgical periodontal treatment of chronic periodontitis: a systematic review and meta-analysis.
        J Clin Periodontol. 2016; 43: 520-530
        • Courval A.
        • Harmouche L.
        • Mathieu A.
        • et al.
        Impact of molar furcations on photodynamic therapy outcomes: a 6-month split-mouth randomized clinical trial.
        Int J Environ Res Public Health. 2020; 17: 4162
        • Schwach-Abdellaoui K.
        • Vivien-Castioni N.
        • Gurny R.
        Local delivery of antimicrobial agents for the treatment of periodontal diseases.
        Eur J Pharm Biopharm. 2000; 50: 83-99
        • Steinberg D.
        • Friedman M.
        Sustained-release delivery of antimicrobial drugs for the treatment of periodontal diseases: fantasy or already reality?.
        Periodontol 2000. 2020; 84: 176-187
        • Mali S.
        Nanomedicine–next generation technology revolutionizing medical practice.
        J Maxillofac Oral Surg. 2013; 12: 1-2
        • He H.
        • Liu L.
        • Morin E.E.
        • et al.
        Survey of clinical translation of cancer nanomedicines-lessons learned from successes and failures.
        Acc Chem Res. 2019; 52: 2445-2461
        • Yu Z.
        • Reynaud F.
        • Lorscheider M.
        • et al.
        Nanomedicines for the delivery of glucocorticoids and nucleic acids as potential alternatives in the treatment of rheumatoid arthritis.
        Interdiscip Rev Nanomed Nanobiotechnol. 2020; 12: e1630
        • Bosshardt D.D.
        The periodontal pocket: pathogenesis, histopathology and consequences.
        Periodontol 2000. 2018; 76: 43-50
        • Suárez L.J.
        • Garzón H.
        • Arboleda S.
        • et al.
        Oral dysbiosis and autoimmunity: from local periodontal responses to an imbalanced systemic immunity. a review.
        Front Immunol. 2020; 11: 591255
        • Vitkov L.
        • Minnich B.
        • Knopf J.
        • et al.
        NETs are double-edged swords with the potential to aggravate or resolve periodontal inflammation.
        Cells. 2020; 9: 2614
        • Cafferata E.A.
        • Alvarez C.
        • Diaz K.T.
        • et al.
        Multifunctional nanocarriers for the treatment of periodontitis: immunomodulatory, antimicrobial, and regenerative strategies.
        Oral Dis. 2019; 25: 1866-1878
        • Liang G.
        • Shi H.
        • Qi Y.
        • et al.
        Specific anti-biofilm activity of carbon quantum dots by destroying P. gingivalis biofilm related genes.
        Int J Nanomedicine. 2020; 15: 5473-5489
        • Aguilar A.
        • Zein N.
        • Harmouch E.
        • et al.
        Application of chitosan in bone and dental engineering.
        Mol. 2019; 24: 3009
        • Kumari S.
        • Tiyyagura H.R.
        • Pottathara Y.B.
        • et al.
        Surface functionalization of chitosan as a coating material for orthopaedic applications: a comprehensive review.
        Carbohydr Polym. 2021; 255: 117487
        • Hu Z.
        • Zhang D.-Y.
        • Lu S.-T.
        • et al.
        Chitosan-based composite materials for prospective hemostatic applications.
        Mar Drugs. 2018; 16: 273
        • Saini S.
        • Dhiman A.
        • Nanda S.
        Immunomodulatory properties of chitosan: impact on wound healing and tissue repair.
        Endocr Metab Immune Disord Drug Targets. 2020; 20: 1611-1623
        • Arancibia R.
        • Maturana C.
        • Silva D.
        • et al.
        Effects of chitosan particles in periodontal pathogens and gingival fibroblasts.
        J Dent Res. 2013; 92: 740-745
        • Hu Y.
        • Chen Y.
        • Lin L.
        • et al.
        Studies on antimicrobial peptide-loaded nanomaterial for root caries restorations to inhibit periodontitis related pathogens in periodontitis care.
        J Microencapsul. 2021; 38: 89-99
        • Barreras U.S.
        • Méndez F.T.
        • Martínez R.E.M.
        • et al.
        Chitosan nanoparticles enhance the antibacterial activity of chlorhexidine in collagen membranes used for periapical guided tissue regeneration.
        Mater Sci Eng C Mater Biol Appl. 2016; 58: 1182-1187
        • Martin V.
        • Ribeiro I.A.C.
        • Alves M.M.
        • et al.
        Understanding intracellular trafficking and anti-inflammatory effects of minocycline chitosan-nanoparticles in human gingival fibroblasts for periodontal disease treatment.
        Int J Pharm. 2019; 572: 118821
        • Eap S.
        • Ferrand A.
        • Schiavi J.
        • et al.
        Collagen implants equipped with ’fish scale’-like nanoreservoirs of growth factors for bone regeneration.
        Nanomed. 2014; 9: 1253-1261
        • Ferrand A.
        • Eap S.
        • Richert L.
        • et al.
        Osteogenetic properties of electrospun nanofibrous PCL scaffolds equipped with chitosan-based nanoreservoirs of growth factors.
        Macromol Biosci. 2014; 14: 45-55
        • Lee B.-S.
        • Lee C.-C.
        • Wang Y.-P.
        • et al.
        Controlled-release of tetracycline and lovastatin by poly(D,L-lactide-co-glycolide acid)-chitosan nanoparticles enhances periodontal regeneration in dogs.
        Int J Nanomedicine. 2016; 11: 285-297
        • Petit C.
        • Batool F.
        • Stutz C.
        • et al.
        Development of a thermosensitive statin loaded chitosan-based hydrogel promoting bone healing.
        Int J Pharm. 2020; 586: 119534
        • Stutz C.
        • Strub M.
        • Clauss F.
        • et al.
        A new polycaprolactone-based biomembrane functionalized with BMP-2 and Stem cells improves maxillary bone regeneration.
        Nanomaterials (Basel). 2020; 10: 1774
        • Soe H.M.S.H.
        • Luckanagul J.A.
        • Pavasant P.
        • et al.
        Development of in situ gel containing asiaticoside/cyclodextrin complexes. Evaluation in culture human periodontal ligament cells (HPLDCs).
        Int J Pharm. 2020; 586: 119589
        • Xu S.
        • Zhou Q.
        • Jiang Z.
        • et al.
        The effect of doxycycline-containing chitosan/carboxymethyl chitosan nanoparticles on NLRP3 inflammasome in periodontal disease.
        Carbohydr Polym. 2020; 237: 116163
        • Aminu N.
        • Chan S.-Y.
        • Yam M.-F.
        • et al.
        A dual-action chitosan-based nanogel system of triclosan and flurbiprofen for localised treatment of periodontitis.
        Int J Pharm. 2019; 570: 118659
      1. Preparation and biological characterization of the mixture of poly(lactic-co-glycolic acid)/chitosan/Ag nanoparticles for periodontal tissue engineering.
        Int J Nanomed. 2019; 14: 483-498
        • Hu F.
        • Zhou Z.
        • Xu Q.
        • et al.
        A novel pH-responsive quaternary ammonium chitosan-liposome nanoparticles for periodontal treatment.
        Int J Biol Macromol. 2019; 129: 1113-1119
        • He Y.
        • Jin Y.
        • Wang X.
        • et al.
        An antimicrobial peptide-loaded gelatin/chitosan nanofibrous membrane fabricated by sequential layer-by-layer electrospinning and electrospraying techniques.
        Nanomaterials (Basel). 2018; 8: 327
        • Guarino V.
        • Cruz-Maya I.
        • Altobelli R.
        • et al.
        Electrospun polycaprolactone nanofibres decorated by drug loaded chitosan nano-reservoirs for antibacterial treatments.
        Nanotechnology. 2017; 28: 505103
        • Lin J.-H.
        • Feng F.
        • Yu M.-C.
        • et al.
        Modulation of periodontitis progression using pH-responsive nanosphere encapsulating metronidazole or N-phenacylthialzolium bromide.
        J Periodontal Res. 2018; 53: 22-28
        • Li H.
        • Ji Q.
        • Chen X.
        • et al.
        Accelerated bony defect healing based on chitosan thermosensitive hydrogel scaffolds embedded with chitosan nanoparticles for the delivery of BMP2 plasmid DNA.
        J Biomed Mater Res A. 2017; 105: 265-273
        • Li D.-D.
        • Pan J.-F.
        • Ji Q.-X.
        • et al.
        Characterization and cytocompatibility of thermosensitive hydrogel embedded with chitosan nanoparticles for delivery of bone morphogenetic protein-2 plasmid DNA.
        J Mater Sci Mater Med. 2016; 27: 134
        • Kumari A.
        • Yadav S.K.
        • Yadav S.C.
        Biodegradable polymeric nanoparticles based drug delivery systems.
        Colloids Surf B Biointerfaces. 2010; 75: 1-18
        • Sun X.
        • Xu C.
        • Wu G.
        • et al.
        Poly(lactic-co-glycolic acid): applications and future prospects for periodontal tissue regeneration.
        Polymers (Basel). 2017; 9: 189
        • Chang P.-C.
        • Tai W.-C.
        • Luo H.-T.
        • et al.
        Core-shell poly-(D,l-lactide-co-glycolide)-chitosan nanospheres with simvastatin-doxycycline for periodontal and osseous repair.
        Int J Biol Macromol. 2020; 158: 627-635
        • de Freitas L.M.
        • Calixto G.M.F.
        • Chorilli M.
        • et al.
        Polymeric nanoparticle-based photodynamic therapy for chronic periodontitis in vivo.
        Int J Mol Sci. 2016; 17: 769
        • Klepac-Ceraj V.
        • Patel N.
        • Song X.
        • et al.
        Photodynamic effects of methylene blue-loaded polymeric nanoparticles on dental plaque bacteria.
        Lasers Surg Med. 2011; 43: 600-606
        • Beg S.
        • Dhiman S.
        • Sharma T.
        • et al.
        Stimuli responsive in situ gelling systems loaded with PLGA nanoparticles of moxifloxacin hydrochloride for effective treatment of periodontitis.
        AAPS PharmSciTech. 2020; 21: 76
        • Ghavimi M.A.
        • Bani Shahabadi A.
        • Jarolmasjed S.
        • et al.
        Nanofibrous asymmetric collagen/curcumin membrane containing aspirin-loaded PLGA nanoparticles for guided bone regeneration.
        Sci Rep. 2020; 10: 18200
        • Pérez-Pacheco C.G.
        • Fernandes N.A.R.
        • Primo F.L.
        • et al.
        Local application of curcumin-loaded nanoparticles as an adjunct to scaling and root planing in periodontitis: Randomized, placebo-controlled, double-blind split-mouth clinical trial.
        Clin Oral Investig. 2021; 25: 3217-3227
        • Lecio G.
        • Ribeiro F.V.
        • Pimentel S.P.
        • et al.
        Novel 20% doxycycline-loaded PLGA nanospheres as adjunctive therapy in chronic periodontitis in type-2 diabetics: randomized clinical, immune and microbiological trial.
        Clin Oral Investig. 2020; 24: 1269-1279
        • Mahmoud M.Y.
        • Steinbach-Rankins J.M.
        • Demuth D.R.
        Functional assessment of peptide-modified PLGA nanoparticles against oral biofilms in a murine model of periodontitis.
        J Control Release. 2019; 297: 3-13
        • Pereira A.S.B.F.
        • Brito G.A.C.
        • Lima M.L.S.
        • et al.
        Metformin hydrochloride-loaded PLGA nanoparticle in periodontal disease experimental model using diabetic rats.
        Int J Mol Sci. 2018; 19: 3488
        • Rizzi M.
        • Migliario M.
        • Rocchetti V.
        • et al.
        Epiregulin-loaded PLGA nanoparticles increase human keratinocytes proliferation: preliminary data.
        Eur Rev Med Pharmacol Sci. 2016; 20: 2484-2490
        • Liu J.
        • Lu S.
        • Tang Q.
        • et al.
        One-step hydrothermal synthesis of photoluminescent carbon nanodots with selective antibacterial activity against Porphyromonas gingivalis.
        Nanoscale. 2017; 9: 7135-7142
        • Lin F.
        • Li C.
        • Chen Z.
        Bacteria-derived carbon dots inhibit biofilm formation of Escherichia coli without affecting cell growth.
        Front Microbiol. 2018; 9: 259
        • Shaikh A.F.
        • Tamboli M.S.
        • Patil R.H.
        • et al.
        Bioinspired carbon quantum dots: an antibiofilm agents.
        J Nanosci Nanotechnol. 2019; 19: 2339-2345
        • Ardekani S.M.
        • Dehghani A.
        • Ye P.
        • et al.
        Conjugated carbon quantum dots: Potent nano-antibiotic for intracellular pathogens.
        J Colloid Interf Sci. 2019; 552: 378-387
        • Pourhajibagher M.
        • Parker S.
        • Chiniforush N.
        • et al.
        Photoexcitation triggering via semiconductor graphene quantum dots by photochemical doping with curcumin versus perio-pathogens mixed biofilms.
        Photodiagnosis Photodyn Ther. 2019; 28: 125-131
        • Pouroutzidou G.K.
        • Liverani L.
        • Theocharidou A.
        • et al.
        Synthesis and characterization of mesoporous Mg- and Sr-doped nanoparticles for moxifloxacin drug delivery in promising tissue engineering applications.
        Int J Mol Sci. 2021; 22
        • Liang W.
        • Wu X.
        • Dong Y.
        • et al.
        In vivo behavior of bioactive glass-based composites in animal models for bone regeneration.
        Biomater Sci. 2021; 9: 1924-1944
        • Li D.
        • Qiu Y.
        • Zhang S.
        • et al.
        A multifunctional antibacterial and osteogenic nanomedicine: QAS-modified core-shell mesoporous silica containing Ag nanoparticles.
        Biomed Res Int. 2020; 2020: 4567049
        • Lian M.
        • Han Y.
        • Sun B.
        • et al.
        A multifunctional electrowritten bi-layered scaffold for guided bone regeneration.
        Acta Biomater. 2020; 118: 83-99
        • Lu M.-M.
        • Ge Y.
        • Qiu J.
        • et al.
        Redox/pH dual-controlled release of chlorhexidine and silver ions from biodegradable mesoporous silica nanoparticles against oral biofilms.
        Int J Nanomedicine. 2018; 13: 7697-7709
        • Liu Z.
        • Chen X.
        • Zhang Z.
        • et al.
        Nanofibrous spongy microspheres to distinctly release miRNA and growth factors to enrich regulatory T cells and rescue periodontal bone loss.
        ACS Nano. 2018; 12: 9785-9799
        • Li X.
        • Luo W.
        • Ng T.W.
        • et al.
        Nanoparticle-encapsulated baicalein markedly modulates pro-inflammatory response in gingival epithelial cells.
        Nanoscale. 2017; 9: 12897-12907
        • Igarashi E.
        Factors affecting toxicity and efficacy of polymeric nanomedicines.
        Toxicol Appl Pharmacol. 2008; 229: 121-134
        • Katsuki S.
        • Koga J.-I.
        • Matoba T.
        • et al.
        Nanoparticle-mediated delivery of pitavastatin to monocytes/macrophages inhibits angiotensin ii-induced abdominal aortic aneurysm formation in Apoe -/- mice.
        J Atheroscler Thromb. 2021; https://doi.org/10.5551/jat.54379
        • McMillan J.
        • Batrakova E.
        • Gendelman H.E.
        Cell delivery of therapeutic nanoparticles.
        Prog Mol Biol Transl Sci. 2011; 104: 563-601